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A DOMAIN EMBEDDING PRECONDITIONER 
FOR THE LAGRANGE MULTIPLIER SYSTEM 

EINAR HAUG AND RAGNAR WINTHER 

ABSTRACT. Finite element approximations for the Dirichlet problem associ- 
ated to a second-order elliptic differential equation are studied. The purpose 
of this paper is to discuss domain embedding preconditioners for discrete sys- 
tems. The essential boundary condition on the interior interface is removed by 
introducing Lagrange multipliers. The associated discrete system, with a sad- 
dle point structure, is preconditioned by a block diagonal preconditioner. The 
main contribution of this paper is to propose a new operator, constructed from 
the H(div)-inner product, for the block of the preconditioner corresponding 
to the multipliers. 

1. INTRODUCTION 

The purpose of this paper is to discuss domain embedding preconditioners for 
second-order elliptic equations with Dirichlet boundary conditions. Hence, if the 
geometry of the domain Q is complex, or irregular, we utilize an embedding of Q 
into an extended domain Qe in order to construct a preconditioner defined on Q. 

As a model problem we will consider 

-div(K(x) gradp) f in Q, 
(1.1) p=g onf, 

p O on &Q \ F. 

Here, Q C R2 is a bounded polygonal domain and &Q is the boundary. The part 
of the boundary that will become an interior curve in the extended domain Qe (i.e. 
the interface between Q and Qe \ Q) is denoted by F. For simplicity, we assume 
that &Q \ F is nonempty and connected. However, the results will also hold for a 
union of connected curves, as illustrated in Figure 1. The coefficient matrix K(x) is 
assumed to be bounded, symmetric and uniformly positive definite on the extended 
domain Qe. 

A standard finite element discretization of the boundary value problem (1.1) 
leads to a discrete, symmetric and positive definite system of the form 

(1.2) Ahph = fh, 

where h > 0 is a small discretization parameter indicating the mesh size. The 
condition number of the coefficient operator Ah will increase with decreasing mesh 
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FIGURE 1. Left: An example of the domain Q where the P-part 
of the boundary is drawn in bold. Right: The extended domain 
Qe. 

size like O(h-2). Therefore, in order to obtain effective iterative methods for the 
discrete system, the construction of a suitable preconditioner Bh is necessary. 

Multigrid methods will for example generate very effective preconditioners Bh. 
However, on more complex domains the construction of a suitable scale of spaces 
necessary for defining these operators might represent a nontrivial practical prob- 
lem. In a domain embedding approach we try to overcome this difficulty by utilizing 
a corresponding preconditioner Be,h defined on the extended, and more regular, do- 
main Qe If we need to solve the problem (1.1) for a sequence of domains Q which 
all can be embedded in a fixed domain Qe, this approach seems rather attractive. 
Such computations may for example occur in shape optimization problems or in the 
computation of flow around a moving rigid body (cf. Glowinski, Pan and Periaux 
[1 1]). 

A rather obvious approach is to consider operators Bh of the form 

(1.3) Bh= Rh Be,h Eh, 

where Eh and Rh are proper extension and restriction operators, respectively. If 
we consider the problem (1.1), but with the Dirichlet boundary conditions on r 
replaced by natural boundary conditions, then suitable operators of the form (1.3) 
can easily be constructed. If Eh is essentially chosen as the extension by zero 
operator and RI, as the restriction operator, then the operator Bh, constructed by 
(1.3), will be a uniform preconditioner for Ah, under the assumption that Be,h has 
the corresponding property on Qe. We refer to Astrakhantsev [3] and Marchuk, 
Kuznetsov and Matsokin [13] for a discussion of these results. 

However, the situation is not as straightforward for essential boundary conditions 
on P. An approach utilizing approximate harmonic extension operators has been 
studied by Nepomnyaschikh [14], [15] and [16], while Vassilevski [20] has proposed 
an alternative extension operator based on a wavelet-like hierarchical decomposi- 
tion of finite element spaces. 

One possible approach to constructing domain embedding preconditioners for 
the Dirichlet problem is to change the weak formulation of the problem in such a 
way that the Dirichlet boundary conditions become natural. This is for example 
achieved by the so-called mixed formulation. In fact, domain embedding precon- 
ditioners for mixed finite element approximations of the Dirichlet problem were 
constructed by Rusten, Vassilevski and Winther [19]. 

As an alternative to this, in this paper we shall discuss the Lagrange multiplier 
method introduced by Babuska [4] (cf. also Bramble [5]). In this method the essen- 
tial boundary conditions are transformed to constraints in a larger function space. 
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The advantage of this approach, compared to the mixed method, is that we are 
essentially still using the standard finite element method. However, the Dirichlet 
boundary conditions are relaxed and incorporated into the discrete system. The 
effect is that the exact numerical solution of the Lagrange multiplier system is the 
same as for the standard finite element method, but the sequence of approxima- 
tions generated by an iterative method will only satisfy the boundary conditions 
approximately. 

In the Lagrange multiplier method the positive definite system (1.2) is replaced 
by an indefinite system with a typical saddle point structure. This system will 
be preconditioned by a block diagonal preconditioner, where the first block, Mh, 
corresponds to a preconditioner for the Neumann problem. The second block of 
the preconditioner, Nh, is a boundary operator defined on F. In this respect our 
approach is closely related to the discussion in Rossi [18] (cf. also Glowinski, Pan and 
Periaux [10]). In [18] the preconditioner Nh is constructed directly on the interface 
F. The main purpose of this paper is to discuss a new strategy for constructing 
a proper boundary operator Nh. We propose to construct this operator from a 
preconditioner of the H(div)-inner product on the extended domain Qe. This 
global H(div)-preconditioner is defined independently of the interface F. Thve 
interface will only enter into the right hand side of the system defining the operator 
Nh. The H(div)-preconditioner on Qe will be of the form proposed in Arnold, Falk 
and Winther [2]. 

The outline of this paper is as follows: In ?2 we formulate the problem using 
Lagrange multipliers and identify the proper operators and function spaces. In ?3 
we discuss a possible preconditioner for the continuous system. In ?4 we introduce 
the appropriate finite element spaces and the corresponding Lagrange multiplier 
method. Inspired by the discussion in ?3, we then derive the preconditioner for the 
discrete system. Finally, in ?5 we report some numerical experiments based on the 
elliptic problem (1.1). We also present computations done for the Stokes problem 
with Dirichlet boundary conditions. 

2. PRELIMINARIES 

The inner product on L2(Q) will be denoted by (, ), and the L2-inner product 
on F by (., .). The same notation will also be used for vector valued functions. 
Corresponding bold symbols are used for vector valued functions, operators and 
function spaces. 

The Sobolev space consisting of functions with first order partial derivatives in 
L2 (Q) will be denoted H1 (Q), while the subspaces Ho' (Q) and Ho (Q; F) are defined 
by 

Ho'(Q) { q E H1(Q) q aQ = ? 

HO(Q;F) = { q E H1(Q) qaQ\r = 0} 
The space1/2 

The space Ho (F) is given by 

H1/2(F) - { qlr : q E H'(Q;F) } 

This space can equivalently be characterized as the interpolation space half way 
between L 2(F) and Ho (F), where the subscript zero indicates that the functions 
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are zero at the endpoints of F. The norm on Ho/2(F) is 

(2.1) 1911/2 inf ;{ llqlll qlr=g }, 
Eq H 1(Q; F) 

where | is the usual Hl-norm. The spaces Ho (Q; F)* and H-1/2 () Ho/2 (F)* 
are the corresponding dual spaces with respect to the proper L2-inner products. 
The norms on these spaces are 

(2.2) lIf 11-1= sup (f, q) and 1U1-1/2= sup (9a)/ 
qEH'(Q;r) llqll1 gHo/2(P) II2 

Hence, the duality pairing between Ho' (Q; F) and Ho' (Q; F)* is an extension of the 
L2-inner product (., .), which still will be denoted (-,-). A similar remark applies 
to the inner product (, ). 

The bilinear form associated with the differential operator in (1.1) is 

(2.3) a(p, q) j K(x)gradp grad q dx forp, q E H1(Q). 

The standard weak formulation of the problem (1.1) is then to find p E Ho (Q; F) 
with pir = g such that 

(2.4) a(p, q) (f, q) for all q E Ho (Q). 

This is equivalent to minimizing the functional 

-a(p,p)-(f,p) over { q E Ho(Q;F) qlr = g }. 
2 

The Lagrange multiplier formulation [4] is derived by reformulating this problem 
as a constrained minimization problem over the larger space Ho' (Q; F). This leads 
to a linear saddle point problem of the form: For f E Ho (Q; F)* and g E Ho/2(r) 
find (p, A) E Ho(Q; F) x H-1/2(F) such that 

(2.5) a(p,q) + (A,q r) = (f,q) for all q E Ho(Q;I) 
(PI,"a) = (g,oa) for all EH/2(F)H 

Of course, the solution p will be the same for both problems (2.4) and (2.5). Fur- 
thermore, the Lagrange multiplier A equals -Op/On on F, where n is the unit 
outward normal vector on F. 

In the weak formulation (2.5) the essential boundary condition pir = g has 
been transformed to a natural boundary condition. This is a key observation for 
the construction of domain embedding preconditioners. However, while (2.4) is a 
positive definite problem, the problem (2.5) is symmetric, but indefinite. 

The system (2.5) can alternatively be written in operator form as 

(2.6) A ( f 

where the coefficient operator A is defined by 

(2.7) A.(A T*) 

Here, A: Ho (Q; F) H- Ho (Q; F)* is given by 

(2.8) (Ap, q) = a(p, q) for p, q E Ho (Q; F) 
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while the trace operator T H (Q; F) |-* Ho/2(F) and its dual T* H-1/2(F) | 

Ho' (Q; ) * are given by 

(2.9) (Tp, A) = (plr,,) = (p, T*A) for A E H-1/2 (F) and p E Ho (Q; F). 

The operator A maps the product space X = Ho(Q; ) x H-1/2(r) into its dual 
space X* = Hy (9;1)* x H/2 (f). F'urthermore, A is an indefinite operator which 
is symmetric with respect to the duality pairing between X and X*. The spaces X 
and X* are equipped with the norms 

() I= IPK1 + II2 and f (f) | = 12 + I2 

Since A is continuous and coercive, and T is continuous and satisfies the Babuska- 
Brezzi condition 

sup (Tq, ) > a UIl_1/2 for all a E H-1/2(r) with a > 0, 
qEH1(Q;P) llqlll 

it follows from the general theory discussed in [7] that the coefficient operator A is 
an isomorphism from X into X*. Hence, there exists a unique and stable solution 
of the problem (2.5). 

3. MAPPING PROPERTIES AND DOMAIN EMBEDDING PRECONDITIONERS 

The main purpose of this paper is to discuss block diagonal preconditioners for 
discrete versions of the Lagrange multiplier system (2.5). However, in order to 
motivate our choice of preconditioners we will first discuss how to "precondition" 
the continuous system. 

We refer to an operator B as a preconditioner for A if B: X* | * X is an 
isomorphism which is symmetric and positive definite as a map from X* to X, i.e. 

(B ,>) 'a 112 for all - EX* 

where a > 0 and (.,-) denotes the duality pairing between X and X*. Hence, the 
system (2.6) is equivalent to the system 

(3.1) BA () (f) 

We observe that the coefficie-nt operator BA in (3.1) is an isomorphism mapping X 
into itself, i.e. 

(3.2) 11B3AI IL(X,x) and 11(B3A)-lcIL(x,x) are bounded. 

Furthermore, (B1.,.) is a new inner product on X which is equivalent to the one 
introduced above. The coefficient operator BA is symmetric with respect to this 
inner product. 

A preconditioned differential system of the form (3.1) can, in theory, be solved 
by a Krylov space method like the minimum residual method (cf. [12] or [17]) or 
the conjugate gradient method applied to the normal equations. The method is 
well defined as long as the coefficient operator BA maps X into itself, and it is 
guaranteed to converge in the norm of X if the spectral condition number 

n(BA) = s 1f1 IL(XiX) e p r (A)-1 I IL(sXcX 

is finite. Hence, property (3.2) ensures convergence. 
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Since X is a product space in our case, it is natural to consider a block diagonal 
preconditioner B: X* F-- X of the form 

The required mapping properties of B then imply that M: Ho (Q; IF)* -* Ho' (Q; 17) 
and N : Ho/(r) r H-/2(F) should be chosen as symmetric, positive definite 
isomorphisms. 

Of course, in practical computations the system (2.6) will be approximated by a 
corresponding discrete system, with coefficient operator Ah. And as a consequence 
the preconditioner B will be replaced by a discrete operator Bh of the form 

BhQ~Mh 0) 
V NhJ 

Discrete versions of the mapping requirements for M and N specified above will 
then guarantee that the spectral condition number of BhAh is independent of the 
discretization parameter h. In order to define an effective iterative method it is also 
necessary that AM1h and Nh are easy to evaluate. 

In the next section we shall discuss how we can utilize domain embedding in 
order to construct suitable operators Mh and Nh. However, we will first present 
the continuous versions of these operators. 

3.1. The construction of M. Let E: H (Q;I)* Ho(Qe) *= H-'(Q,) be the 
extension by zero operator and R: Ho (Q,) -> Ho' (Q; IF) the restriction operator. 
Then E and R are dual operators. Furthermore, if Be : H- A(Q) -* H() (Qe) is an 
isomorphism then it can be seen that 

(3.3) M = R Be E : Ho (Q; r ) Hn (Q; F) 

is an isomorphism. Hence, the operator M, constructed by utilizing domain em- 
bedding, has the proper mapping property derived above. 

In the discrete case the operator Be will correspond to a preconditioner for a 
Dirichlet problem for a second-order elliptic problem on the extended domain Qe. 
The construction of the operator M corresponds to the standard domain embedding 
preconditioner for the Neumann problem (cf., e.g., [3] or [13]). The desired mapping 
property of the operator M, inherited from Be, is a consequence of the so-called 
"fictitious space lemma", given in [14]. In fact, it is the possible use of this operator 
that is the main motivation for introducing the Lagrange multiplier forrtulation in 
order to utilize domain embedding for Dirichlet problems. 

3.2. The construction of N. The construction of the boundary preconditioner 
N : Ho/2(F) F-- H1/2(F) is not as obvious. A seemingly natural choice would be 
the following: 

Ng - - 
Onr 

where n is the outward unit vector on F and the H1-function X is the solution of 

(3.4) -div(gradq) =0 in Q, and gj= 0 on IQ\F 

This operator has all the required properties, except that we have not utilized 
domain embedding. In fact, in order to evaluate N we have to solve a Dirichlet 
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problem on the original domain Q, and this is exactly what we want to avoid by 
using domain embedding. 

Another possibility is to use some kind of boundary operator on F. We refer to 
[18] for this approach. As an alternative to this we propose an operator N based 
on a preconditioner for the H(div; Qe)-inner product. Hence, in correspondence 
with the construction of the operator M above, also the operator N is defined from 
a suitable preconditioner with respect to the extended and regular domain Qe. 

The Hilbert space H(div; Qe) consists of square-integrable vector fields with 
square-integrable divergence in the domain Qe. The inner product A(., ) on 
H(div; Qe) is defined by 

A(u, v) = (u, v)e + (div u, div v)e for u, v e H(div; Qe), 

where ( X)e is the inner product on L2(Q,). The related linear operator A 
H(div; Qe) F-- H(div; Qe) * is defined by 

(3.5) (Au,v), = A(u,v) for u,v e H(div;Q,), 

or equivalently by 

(3.6) A=I-graddiv. 

Consider the following problem: For a given g e Ho/2(F) find u e H(div; Qe) such 
that 

(3.7) A(u, v) = (g, (v . n)rp) for all v e H(div; Qe). 

The boundary value problem corresponding to (3.7) is 

(3.8) u - grad(div u) = O in Q, and [div u] = g on F, {div u = 0 on oQ,. 
Here, [div u] denotes the jump in div u across F. The important difference be- 
tween equation (3.8) and equation (3.4) is that [div u] = g is imposed as a natural 
boundary condition in (3.8), while g enters in an essential boundary condition in 
(3.4). 

The suitable preconditioner N: Hn/2(I) - H/2(- ) is given by 

(3.9) Ng = (u n)rp for g e H'/2(I), 

where u e H(div; Qe) is the solution of (3.7). 
If v e H(div; Qe) then (v . n)rp is continuous over the interface F, i.e. the normal 

component of v taken from the outside or inside of F is the same. Furthermore, it 
follows essentially from the standard trace theorem for H(div) (cf. Theorem 2.5 of 
[9]) that 

(3.10) (v . n)r -1/2 < c1 IIV Iiv for all v e H(div; Q,), 

where llvll,liv A(v, v)1/2 and c1 > 0 is a constant independent of v. 
F'rom this trace inequality it follows that N : Hnj2(F) - H-/2() is well- 

defined and bounded. For if g e Hj2 (F) and u is the corresponding solution of 
(3.7), then 

(3.11) c7 21(u. n)rp ?/2 < A(u,u) = (g, (u n)) ? r g1/2 l(u f)-1/2, 

and therefore 

(3.12) INgl-1/2 ?< Cl 1g11/2. 
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Hence, we have shown that N: HoJ2(F) 1 * H- /2(F) is bounded. However, the 
following theorem shows that N has all the properties required for the precondi- 
tioner. 

Theorem 3.1. The operator N, defined by (3.9), is a symmetric, positive definzite 
isomorphism from Hl2 (F) into H-1/2(). 

This theorem follows from well-known properties of H(div)-spaces, given for 
example in [9]. However, since we need to prove a discrete version of this result in 
the next section, let us recall the basic steps. 

If Ng, = (ul . n)rp and Ny2 = (U2 n)rp, then the symmetry of N follows from 
the identity 

(Ngi,92) = ((ui n)r,,g2) = A(u,u2) 

We have already shown that N is bounded (equation (3.12)). That N-1 is bounded, 
or equivalently that g is bounded by Ng, follows from the extension result, cf. [9]: 

(3.13) Given Ap E H-1/2(F), there exists a v E H(div; Qe) with (v . n)rp = , 

and JIvIldiv < cC,LIlJ/2 for some positive constant c independent of ,/-. 

Using this extension result, we obtain by duality that for any g E Hol2 (F) 

111/2 sup (g,,) < c sup (g, (v n)r) 
pGH-1/2(r) 1I1-1/2 vEH(div;Qe) | jIV div 

(3.14) c sup A(u,v) ?< c <div c 1g11/2 I (u n)rII1/27 

which implies that N-1 E ,(H-1/2(r),H /2(r)). Finally, (3.11) and (3.14) imply 
that N is positive definite. 

In order to evaluate the operator N we need to solve problem (3.7). Alternatively 
we may use an operator with the same mapping properties as A-1, i.e. a uniform 
preconditioner for A. This subject will be further discussed for the discrete operator 
Ah in ?4.1. 

With the above choices for MI and N the block diagonal operator B will be a 
symmetric and positive definite isomorphism, making it an acceptable choice for a 
preconditioner for the continuous problem. Our next task is then to find suitable 
discrete spaces and discrete operators Mh and Nh. The requirements for the discrete 
operators are that they must have mapping properties which are discrete analogs of 
the requirements for their continuous counterpart. In addition they must be easy 
to evaluate. 

4. DISCRETIZATION 

The Lagrange multiplier method is derived from the weak formulation (2.5). We 
will use finite element spaces Wh C Ho' (Q; r) and Sh C Ho 2(r) based on a family 
of triangulations { Th}hE(O,1] of Q, where h denotes the characteristic mesh size. 
We assume that the mesh is quasi-uniform. We further assume that r coincides 
with gridlines of Th. For a non-negative integer r we let the space Wh consist of 
continuous piecewise polynomials of degree at most r + 1, i.e. 

Whz= {q E Ho (Q; r) q|K E Pr+1 (K) for all K E Th}, 
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where Pr (K) denotes the space of polynomials of degree r on K. The space Sh is 
constructed from Wh by setting 

(4.1) Sh = Whlr, 

i.e. Sh is the trace space of Wh. Let us recall that the quasi-uniformity of the mesh 
implies a number of inverse inequalities. In the discussion below we will use the 
fact that there is a constant c, independent of h, such that 

(4.2) 0111/2+0 < ch-1/21lHo for all a E Sh and 0 = 0,1/2. 

A well-known consequence of (4.2) and approximation properties is that the L2- 

projection Qh: L2(r) --+ Sh is uniformly bounded in Ho/2(r) and H-/2(r). 
F;urthermore, for any a E Sh the norm 01-1/2 can equivalently be characterized by 
duality with respect to Sh, i.e. the two norms 

(4.3) 0J1-1/2 and sup -(o,g) 
gESh 1Y11/2 

are equivalent on Sh, uniformly in h. Similarly, the two norms 

(4.4) Y191/2 and sup (g, a) 
cIESh 01f-1/2 

are also equivalent on Sh. 

Furthermore, it is established in [6] that for any g E Sh 

inf { llqlll q EWh, Tq = g} < C 1911/2, 

where the constant c is independent of g and h. Hence, we can conclude that the 
norms 

(4.5) 1C1-1/2 and sup (u,Tq) 
qEWh qiH 

are equivalent on Sh, uniformly in h. 
The discrete problem corresponding to (2.5) is then to find (Ph, Ah) E Wh X Sh 

such that 

(4.6) a(ph, q) + (Ah, qlr) = (f, q) for all q E Wh, 

(PhkIr, ) = (9,CJ) for all u E Sh. 

This system has a unique solution. Furthermore, Ph E Wh satisfies Ph r Qhg and 

a(ph,q) = (f,q) for all q EWh 

where Who = { q E Wh : qlr = 0 }. Hence, in this sense Ph can be seen as 
a standard finite element approximation of p derived from the weak formulation 
(2.4). The variable Ah E Sh is an approximation of -Op/On on r. 

The discrete system may also be formulated in operator form by introducing the 
discrete coefficient operator Ah. Let Ah: Wh X Sh | Wh X Sh be the L2-symmetric, 
indefinite operator defined by 

ATh Th 

where Th: Wh -+ Sh is the trace operator, Th: Sh | Wh its L2-dual. Frthermore, 
Ah: Wh Wh is given by 

(Ahp, q) = a(p, q) for p, q E Wh. 
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Hence, Ah corresponds to an approximation of the elliptic operator - div(K grad.) 
with Neumann boundary conditions on r. The system (4.6) can now be written in 
the form 

(4.8) Ah (X) 

where fh E Wh and Yh E Sh are L2-projections of f and g. 
Let the norm on Wh be II,. The dual space Wh* is equal to Wh as a set, but 

with norm 

IIPIIWh* sup (p, q) 
qEWh HlqHi 

Similarly, we let - 1-1/2 be the norm on Sh, while Sh denotes this space equipped 
with the norm I 1/2. The discrete elliptic operator Ah has the property that the 
operator norms 

| AhIK|C(wh,wh*) and 1 Ah[1lc(wh*,Wh) 

are bounded uniformly in h. Together with (4.5) above we derive by straightforward 
energy estimates that 

(4.9) |lAh K|(xh,x*) and 1lh lA | lc(x*,xh) are bounded uniformly in h. 

Here, Xh and X* denote the product spaces Xh = Wh x Sh and X* = Wh* x S*. 
Note that the property (4.9) corresponds to the fact that the continuous operator 
A is an isomorphism from Ho(Q;r) x H-1/2(r) into Ho(Q;r)* x (r). 

As a consequence of the mapping property (4.9) for Ah, an obvious choice of a 
preconditioner Bh is an L2-symmetric, positive definite block diagonal operator 

Bhz= (Mh 0N) Wh X Sh | + Wh X Sh 

such that 

(4.10) H13hIlC(X*,Xh) and 1Bui[1I[C(Xh,X*) are bounded uniformly in h. 

As in the continuous case we then obtain that the operator BhAh is symmetric with 
respect to the inner product (B-1., .), with spectral condition number rK(BhAh) 
independent of h. 

4.1. Domain embedding preconditioners. Let {fTe,h}hE(O,11 be a family of tri- 

angulations of the extended domain Qe such that Th is obtained by restricting Te,h 

to Q. Let We,h C Ho (Qe) be the corresponding finite element space with continu- 

ous piecewise polynomials of degree at most r + 1. The purpose of the rest of this 

section is to discuss how domain embedding can be utilized in order to construct 

the preconditioners Mh and Nh. Recall that (4.10) implies that Mh: Wh - Wh is 

required to be a uniform preconditioner for the discrete elliptic operator Ah, corre- 

sponding to Neumann boundary conditions on r, and that such operators can be 

constructed by a discrete analog of (3.3). We will therefore only discuss here the 

operator Nh. By (4.10) the operator Nh: Sh -+ Sh needs to be constructed so that 

(4.11) HNh|(s,,sh) and I|Ni71lK(sh,s*) are bounded uniformly in h. 

In order to define a discrete analog of the operator N discussed in ?3.2 we need 

to discretize the problem (3.7). A natural space for discretizing H(div; Qe) is the 

Raviart-Thomas space. For the non-negative integer r associated with the space 
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Wh of continuous piecewise polynomials, the corresponding Raviart-Thomas space 
of index r is given by 

(4.12) Vh= {v E H(div; Qe) : VK E Pr(K) + xPr(K) for all K E Te,h}, 

where Pr(K) denotes the space of polynomials of degree r on K. A vector field in 
Vh is uniquely specified by giving its value at r(r + 1)/2 points in each triangle and 
the value of its normal component at r + 1 points on each edge of the triangulation. 
We will also need the trace space of Vh * n on r, which is defined by: 

Zh ={ f:I = (v - n)r for v E Vh}. 

Hence, Zh is a space of discontinuous piecewise polynomials on r. 
For a given g E Sh the problem (3.7) is replaced by: Find Uh E Vh such that 

(4.13) A(Uh, V) = (g, (v * n)r) for all v E Vh . 

Recall that Qh : L2(r) "-* Sh is the L2-projection. Define Nh: Sh ~` Sh by 

Nhg = Qh(Uh * n)r, 

where Uh E Vh solves (4.13). It follows directly from the trace inequality (3.10) 
that 

INhgl/2 ? clA(Uh, Uh) c(9, (Uh n)r) c1911/2 INhgl-1/2 

or 

(4.14) INhgl_/2 < c2 9k/2. 

Hence, the continuous bound (3.12) carries directly over to the discrete case. 
Let Q* : L2(r) " Zh be the L2-projection. The preconditioner Nh : Sh Sh 

is now given by 

(4.15) Nh = Nh + ahh Qh(I - Qh) 

for some positive constant a. It is straightforward to check that Nh is L2-symmetric 
and positive definite. Furthermore, since Zh contains piecewise constants, 

(4.16) |(I- Q*)go < ch|g|l for all g E Sh, 

where c is independent of h. Together with the inverse inequality (4.2) and the 
result (4.3), this shows that 

IQ(-h) -(1/2 (c sup (- Qh)g, a) 
QhU ((- Q)g, (I - 

Qh)(J) 1Qh(I - Q*)91-/ = u c sup 
aES,, 1C11/2 aESh, 1C11/2 

< c sup K(i-Qh)910 I(i-Qh)U10 < ch1911/ 
a.ESi, I' 11/2 

where the constant c is independent of h. 
Together with (4.14) this implies that Nh E (Sh, Sh) is uniformly bounded. In 

fact, the following theorem shows that Nh satisfies (4.11). 

Theorem 4.1. The operator Nh : Sh " Sh defined above is an L2-symmetric, 
positive definite operator such that 

||Nh| |L(ST,S,,) and |]NW JJL(S,S,) 

are bounded uniformly in h. 
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Proof. It remains to bound J|NW-jj|(S,,S-). We shall need a discrete extension 
result corresponding to (3.13). The following extension result is proved in [19, 
Lemma 4.3]. 

(4.17) Given ,u E Zh, there exists a v E Vh with (v n)r = ,t and 

JIVIldiv < c l,u|-1/2 for some constant c independent of ,t and h. 

In addition, we claim that Q* is stable in H-1/2(r), i.e. there is a constant c, 
independent of h, such that 

(4.18) IQ h(51-1/2 < C 1011-1/2 for all 0" E Sh. 

In order to see this, observe first that it follows from (4.2) and duality that 

(4.19) lolo < ch-1/21tlc1/2 for all 0" E Sh. 

Therefore, we have 

IQ hl-1/2 sup ( < sup ('92 + sup (h, (I Qg) 

gEH1/2(r) 1911/2 gEH/2(r) 1911/2 gEH/ 2(r) 1911/2 

< 11-1/2 + chl /21ljo < CICJl1/2, 

and hence (4.18) is established. 

In order to bound Y191/2 by INhgll/2 we split the norm of g into two parts. For 

a given g E Sh we have from (4.4) that 

(g, u-) (g, Q;;7 ( Q*~)g, (7) 
(4.20) 1911/2 = sup < SUP + sup h 

crESh 10f|-1/2 ESh O1( -1/2 cESh I0"I-1/2 

We will estimate each term on the right hand side of (4.20). For the first term we 

note that (4.17) and (4.18) imply that 

SUp 9Q* a) <CSp(91 Qh(a) < CSU (v (V n)r sup h ? c sup < c sup 
iESh 01f|-1/2 iESh IQ*(0 -1/2 vEVh ||VH|div 

Hence, if we let Uh E Vh solve (4.13), then 

(g, Q*u A(Uh, V) 1 _ 

(4.21) sup h Q() < C sup )< cA(Uh,Uh)12 - c(Nhg,g) 1/2 

7ESh 10f|-1/2 VEVh ||VH|div 

On the other hand, by using (4.19) and the Cauchy-Schwarz inequality we obtain 

for the second term 

Sup (1 h)g,a) < sup (I- Q*h)go lo < C (h-1Qh(I-Q*)g )1/2. 
crESh 01-1/2 cESh 191-1/2 

By combining this with (4.20) and (4.21) we now have 

1911/2 < c ((Nhg,g)1/2 + (hlQh(I -Q;)g, g)1/2) 

< c (Nhg,g)1/2 < ClNh9gj12 YLg/2$ 

and hence LcNW-11|z(Sh,S*) is bounded uniformly in h. 

Instead of solving the equation (4.13) exactly, one can use a suitable precondi- 
tioner. Let Ah: Vh |-4 Vh be the operator associated with the bilinear form A, 
i.e. 

(AhU, V)e = A(u, v) for all u, v E Vh. 
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Furthermore, let Gh: Sh I-4 Vh be defined by 

(Ghg, V)e =(g, (v n)r) for g E Sh, v E Vh. 

Hence, we have 

(4.22) (Nhg, 0) = (Ah Ghg, Ghg)e for all g, a" E Sh. 

Assume now that e)h: Vh 1-* Vh is a uniform preconditioner for Ah, i.e. the bilinear 
forms 

(4.23) (A-jv,v)e and (EhV,v)e are uniformly equivalent 

with respect to h on Vh. Define an operator Nh: Sh 4 Sh by 

Nhg = Qh(iih ln)r, 

where U-h = ehGhg E Vh. Then 

(Nhg, CJ) = (ehGhg, Ghg)e for all 9, eC Sh, 

and as a consequence of (4.22) and (4.23) the bilinear forms 

(Nhg, g) and (Nhg, g) are uniformly equivalent in h. 

Therefore, the operator Nh: Sh - Sh given by 

(4.24) Nh = Nh + ah1Qh(I - Q*h) 

will satisfy the mapping property (4.11). 
We have therefore seen that a uniform preconditioner e)h for the operator Ah 

associated with the H(div)-inner product A, defined on the extended domain Qe, 
can be used to construct a suitable preconditioner Nh. Preconditioners for Ah are 
discussed in [2], [8] and [21]. We should note here that the differential operator A, 
given by (3.6), has the property that it acts like a second-order elliptic operator on 
gradient fields, while A coincides with the identity on curl fields. Hence, A is not an 
elliptic operator and, as a consequence, the construction of, for example, multilevel 
preconditioners for the corresponding discrete operator Ah does not appear to be 
straightforward. However, it is established in [2] that a standard multigrid V- 
cycle operator, with a proper smoothing operator, will in fact lead to a uniform 
preconditioner. 

5. NUMERICAL EXAMPLES 

In this section we will present some numerical examples where we use the pre- 
conditioner described in the previous sections. In these examples Q will be the 
L-shaped domain shown in Figure 2, where DQ = rUT and T = T1UT2UT3UT4. 
The extended domain Qe is equal to the unit square. The triangulation of Q and Qe 

is obtained by first dividing the domain into h x h sized squares, and then dividing 
each square into two triangles by using the negatively sloped diagonal. The finite 
element spaces Wh, We,h and Vh are chosen with r = 0. Hence, the spaces Wh and 
We,h consist of continuous piecewise linear functions. The space Vh is the lowest 
order Raviart-Thomas space, i.e. Vh consists of vector functions with continuous 
normal component on the edges of the triangulation, which on each element have 
the form a + bx for a E JR2 and b E JR. The trace space of Wh on F, Sh, consists 
of one dimensional continuous piecewise linear functions, while Zh is the space of 
piecewise constants on F. A version of the minimum residual method [17] is used 
to solve the linear systems. The iterations are terminated when the residual of the 



78 EINAR HAUG AND RAGNAR WINTHER 

l2 

r 

r 
r *TII e 

T4 

FIGURE 2. The domain used in the numerical examples in ?5. The 
extended domain Qe is the unit square. 

preconditioned system is reduced by a factor 10-5 in the norm induced by the inner 
product (B3-1.,.). 

The domain embedding preconditioner Mh: Wh l + Wh is chosen of the form 
indicated by (3.3). More precisely, 

Mh = Rh Be,h Eh, 

where Rh: We,h l- +Wh is the restriction operator, and Eh: Wh l + We,h is the 
L2-adjoint operator. Furthermore, Be,h We,h I'+ We,h is a preconditioner for the 
operator associated with an extension of the bilinear form (2.3). In the examples 
below Be,h is a multigrid V-cycle operator with an SSOR-smoother. 

The preconditioner Nh: Sh 1-+ Sh will be of the form (4.24) with a. = 3.0. In 
particular, the preconditioner oh: Vh l-+ Vh for the operator Ah iS chosen as 
the V-cycle operator described in [2], with a multiplicative Schwarz operator as a 
smoother. 

Example 5.1. In the first example we solve equation (4.6) with K(x) equal to the 
identity matrix, f(x) = 1 and g(x) = (1 - (2x1 -1)2)(1 -(2X2 - 1)2). 

The condition number IS(BhAh) and the required number of iterations are dis- 

played in Table 1. Here, the condition numbers are estimated by a standard tech- 

nique from the conjugate gradient method applied to the normal equations. The 

results clearly seem to confirm our theory above, which predicts that both the 

condition number and the number of iterations are bounded from above as h -, 0. 

TABLE 1. The condition number for BhAh and the number of it- 

erations used when solving the Poisson problem in Example 5.1 

h 1/8 1/16 1/32 1/64 1/128 
,i(3hAh) 2.24 2.28 2.34 2.39 2.43 

nO. of iterations 10 13 15 15 15 
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5.1. Stokes problem. We will next try to adopt the domain embedding precon- 
ditioning technique to the Stokes problem with Dirichlet boundary conditions. The 
computations will be done on the L-shaped domain in Figure 2. The Stokes equa- 
tions model the flow of a (very) viscous fluid. The steady state problem, with u 
denoting the velocity and p the pressure, is given by 

-Au + grad p = f in Q, 

divu = 0 in Q. 

We will assume that r is an impermeable part of the boundary. Hence, the Dirichlet 
boundary conditions are of the form 

(5.1) u = 0 onr, 
u =g onT. 

Here, the Dirichlet data g E Ho/2 (T) satisfies the compatibility condition 

jg .nds= 0. 

In order to state a weak formulation of the problem we define the function spaces 

HL(Q;F) = { v E (H1(Q))2 vT g E H1/2(T) } 

Lo(Q) = {qe L2(Q) qdx = }. 
0~~~~~~ 

Introducing Lagrange multipliers A E H-1/2(r) = (H-1/2(r))2 to transform the 
essential boundary conditions on F into natural conditions, we obtain the weak 
formulation: Find (u,A,p) E H (Q;F) x H-1/2(r) x Lo(Q) such that 

(5.2) 

(grad u, grad v) + (A, v )-(p, div v) = (f, v) for all v EHo (Q; F), 

(upI, a) = 0 for all a EH- 1/2(r), 

-(divu,q) = 0 for all q ELo(Q). 

For this system the Lagrange multiplier A equals -Du/Dn + pn on F. The forcing 
function f is assumed to be in Ho(Q;]F)*, i.e. the dual space of Ho(Q; F) with 
respect to the L2-inner product. 

The system (5.2) can be written in operator form with a coefficient operator A 
given by 

- A T* grad 
A= T O O 

<-div O O 

where T is just a vector version of the trace operator and T* its dual. Since our 
interest in the mapping properties of the coefficient operator is motivated by the 
desire to use iterative methods, it is sufficient to consider the operator A for func- 
tions u which satisfy homogeneous boundary conditions, i.e. g = 0. This is because 
differences of two solutions in the iteration will have this property. Therefore, we 
consider 

(5.3) A: Ho(Q;F) x H1/2(F) x Lo(Q) Hj(Q;F)* x Ho/2(F) x Lo(Q). 
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The operator A is an isomorphism on these spaces. As a consequence, a precondi- 
tioner B should be a block diagonal isomorphism mapping 

Ho'(Q;)* x Ho/2(F) x Lo(Q) onto Ho'(Q;F) x H-1/2(F) x Lo(Q) 

Hence, if 

B = diag(M, ON, yI), 

for some positive constants O3 and -y, then the requirements on M, M: Ho (Q; F)* I> 

Hoj(Q;F), and N, N: Ho/2(F) -+ H-1/2(F), are simply vector versions of the 
corresponding requirements on the operators which were used to build the precon- 
ditioner for the Lagrange multiplier system (2.6) associated with the scalar problem 
(1.1). 

Next, we consider a finite element discretization of the system (5.2). We assume 
that the domains Q and Qe are triangulated as described above. F'urthermore, 
the function g defined on T is assumed to be piecewise linear with respect to this 
triangulation (otherwise, replace g by its piecewise linear interpolant). We will 
use the space Ug,h C H (Q; F), consisting of continuous piecewise linear vector 
functions plus cubic bubble functions on each triangle. The finite element space 
Sh C Ho/2(F) is constructed by setting Sh = Ug,hlr' Since the bubble functions 
are zero on the edges of the triangles, the space Sh will be equal to a vector version 
of the space Sh used in Example 5.1 above. Finally, we use Wh c Lo(Q) consisting 
of continuous piecewise linear functions to discretize the pressure. 

The finite element method is now defined from the weak formulation (5.2) by 
replacing the spaces H'(Q; F), Ho/2(F) and Lo(Q) by the subspaces Ug,h, Sh and 
Wh, respectively. It is well-known that the pair of spaces (Ug,h, Wh) satisfies the 
Babuska-Brezzi condition; cf. [1] or [71. 

We will not perform a detailed analysis of the discrete system in this case. How- 
ever, motivated by the discussion of the continuous problem above, we will propose 
a block diagonal preconditioner, and report the results of some numerical experi- 
ments. 

The discrete coefficient operator Ah will be of the form 

-Ah Th* gradh 
Ah = Th 0 0 Uo,h X Sh X U S /h W - UO,h X Sh X Wh- 

-divh 0 0 / 

Here, each block of the operator is defined implicitly by the discrete system. Based 
on the discussion of the continuous problem above, we consider a preconditioner 
Bh of the form 

(5.4) Bh = diag(Mh, ON,, Yh). 

The operator Nh, defined on Sh = (Sh)2, is a vector version of the operator Nh used 
in Example 5.1. In the space Uo,h, the subspace spanned by the bubble functions is 
orthogonal to the space of continuous piecewise linear functions with respect to the 
Dirichlet form. Therefore, the operator Mh is constructed from a diagonal operator 
corresponding to the space spanned by the bubble functions, and by two copies of 
the scalar operator Mh used above. Furthermore, the perturbation of the identity 
operator on Wh, corresponding to a lumping procedure, is introduced in order to 
avoid the inversion of the mass matrix with respect to Wh. 
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TABLE 2. The condition number for BhAh and the number of it- 
erations used when solving the Stokes problem in Example 5.2. 

h 1/8 1/16 1/32 1/64 1/128 

K(1hAh) 14.95 15.60 16.04 16.34 16.50 

no. of iterations 45 54 58 60 62 

Example 5.2. We will consider the case where the fluid flows into the domain 
through the T2 boundary and leaves the domain through the T, boundary. The 
other boundaries will be impermeable. Hence, we chose gly = (x2(0.5 - x2), 0), 
9IT2 = (0, -xi(O.5 - x1)) and 9gT3 = gly = 0. Furthermore, we used f = 1. 
The parameters involved in the preconditioner (5.4) were chosen as - = -y = 8.0. 
The condition numbers <(BhAh) and the required number of iterations for the 
minimum residual method are displayed in Table 2. We observe that the numbers 
are considerably higher than for the Poisson problem, but they still appear to be 
bounded from above independently of h. 
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